Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pain ; 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-2230839

ABSTRACT

ABSTRACT: The risk of COVID-19 in those with chronic pain is unknown. We investigated whether self-reported chronic pain was associated with COVID-19 hospitalisation or mortality. UK Biobank recruited 502,624 participants aged 37 to 73 years between 2006 and 2010. Baseline exposure data, including chronic pain (>3 months, in at least 1 of 7 prespecified body sites) and chronic widespread pain (>3 months, all over body), were linked to COVID-19 hospitalisations or mortality. Univariable or multivariable Poisson regression analyses were performed on the association between chronic pain and COVID-19 hospitalisation and Cox regression analyses of the associations with COVID-19 mortality. Multivariable analyses adjusted incrementally for sociodemographic confounders, then lifestyle risk factors, and finally long-term condition count. Of 441,403 UK Biobank participants with complete data, 3180 (0.7%) were hospitalised for COVID-19 and 1040 (0.2%) died from COVID-19. Chronic pain was associated with hospital admission for COVID-19 even after adjustment for all covariates (incidence rate ratio 1.16; 95% confidence interval [CI] 1.08-1.24; P < 0.001), as was chronic widespread pain (incidence rate ratio 1.33; 95% CI 1.06-1.66; P = 0.012). There was clear evidence of a dose-response relationship with number of pain sites (fully adjusted global P-value < 0.001). After adjustment for all covariates, there was no association between chronic pain (HR 1.01; 95% CI 0.89-1.15; P = 0.834) but attenuated association with chronic widespread pain (HR 1.50, 95% CI 1.04-2.16, P-value = 0.032) and COVID-19 mortality. Chronic pain is associated with higher risk of hospitalisation for COVID-19, but the association with mortality is unclear. Future research is required to investigate these findings further and determine whether pain is associated with long COVID.

2.
BMC Infect Dis ; 22(1): 273, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1770488

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 virus (COVID-19) impacts disadvantaged groups most. Lifestyle factors are also associated with adverse COVID-19 outcomes. To inform COVID-19 policy and interventions, we explored effect modification of socioeconomic-status (SES) on associations between lifestyle and COVID-19 outcomes. METHODS: Using data from UK-Biobank, a large prospective cohort of 502,536 participants aged 37-73 years recruited between 2006 and 2010, we assigned participants a lifestyle score comprising nine factors. Poisson regression models with penalised splines were used to analyse associations between lifestyle score, deprivation (Townsend), and COVID-19 mortality and severe COVID-19. Associations between each exposure and outcome were examined independently before participants were dichotomised by deprivation to examine exposures jointly. Models were adjusted for sociodemographic/health factors. RESULTS: Of 343,850 participants (mean age > 60 years) with complete data, 707 (0.21%) died from COVID-19 and 2506 (0.76%) had severe COVID-19. There was evidence of a nonlinear association between lifestyle score and COVID-19 mortality but limited evidence for nonlinearity between lifestyle score and severe COVID-19 and between deprivation and COVID-19 outcomes. Compared with low deprivation, participants in the high deprivation group had higher risk of COVID-19 outcomes across the lifestyle score. There was evidence for an additive interaction between lifestyle score and deprivation. Compared with participants with the healthiest lifestyle score in the low deprivation group, COVID-19 mortality risk ratios (95% CIs) for those with less healthy scores in low versus high deprivation groups were 5.09 (1.39-25.20) and 9.60 (4.70-21.44), respectively. Equivalent figures for severe COVID-19 were 5.17 (2.46-12.01) and 6.02 (4.72-7.71). Alternative SES measures produced similar results. CONCLUSIONS: Unhealthy lifestyles are associated with higher risk of adverse COVID-19, but risks are highest in the most disadvantaged, suggesting an additive influence between SES and lifestyle. COVID-19 policy and interventions should consider both lifestyle and SES. The greatest public health benefit from lifestyle focussed COVID-19 policy and interventions is likely to be seen when greatest support for healthy living is provided to the most disadvantaged groups.


Subject(s)
Biological Specimen Banks , COVID-19 , Adult , Aged , COVID-19/epidemiology , Humans , Life Style , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2 , Social Class , United Kingdom/epidemiology
4.
PLoS One ; 15(8): e0238091, 2020.
Article in English | MEDLINE | ID: covidwho-725075

ABSTRACT

BACKGROUND: It is now well recognised that the risk of severe COVID-19 increases with some long-term conditions (LTCs). However, prior research primarily focuses on individual LTCs and there is a lack of data on the influence of multimorbidity (≥2 LTCs) on the risk of COVID-19. Given the high prevalence of multimorbidity, more detailed understanding of the associations with multimorbidity and COVID-19 would improve risk stratification and help protect those most vulnerable to severe COVID-19. Here we examine the relationships between multimorbidity, polypharmacy (a proxy of multimorbidity), and COVID-19; and how these differ by sociodemographic, lifestyle, and physiological prognostic factors. METHODS AND FINDINGS: We studied data from UK Biobank (428,199 participants; aged 37-73; recruited 2006-2010) on self-reported LTCs, medications, sociodemographic, lifestyle, and physiological measures which were linked to COVID-19 test data. Poisson regression models examined risk of COVID-19 by multimorbidity/polypharmacy and effect modification by COVID-19 prognostic factors (age/sex/ethnicity/socioeconomic status/smoking/physical activity/BMI/systolic blood pressure/renal function). 4,498 (1.05%) participants were tested; 1,324 (0.31%) tested positive for COVID-19. Compared with no LTCs, relative risk (RR) of COVID-19 in those with 1 LTC was no higher (RR 1.12 (CI 0.96-1.30)), whereas those with ≥2 LTCs had 48% higher risk; RR 1.48 (1.28-1.71). Compared with no cardiometabolic LTCs, having 1 and ≥2 cardiometabolic LTCs had a higher risk of COVID-19; RR 1.28 (1.12-1.46) and 1.77 (1.46-2.15), respectively. Polypharmacy was associated with a dose response higher risk of COVID-19. All prognostic factors were associated with a higher risk of COVID-19 infection in multimorbidity; being non-white, most socioeconomically deprived, BMI ≥40 kg/m2, and reduced renal function were associated with the highest risk of COVID-19 infection: RR 2.81 (2.09-3.78); 2.79 (2.00-3.90); 2.66 (1.88-3.76); 2.13 (1.46-3.12), respectively. No multiplicative interaction between multimorbidity and prognostic factors was identified. Important limitations include the low proportion of UK Biobank participants with COVID-19 test data (1.05%) and UK Biobank participants being more affluent, healthier and less ethnically diverse than the general population. CONCLUSIONS: Increasing multimorbidity, especially cardiometabolic multimorbidity, and polypharmacy are associated with a higher risk of developing COVID-19. Those with multimorbidity and additional factors, such as non-white ethnicity, are at heightened risk of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Multimorbidity , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Polypharmacy , Adult , Aged , Aged, 80 and over , Biological Specimen Banks , COVID-19 , Coronavirus Infections/ethnology , Coronavirus Infections/virology , Ethnicity , Female , Health Status , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/ethnology , Pneumonia, Viral/virology , Prevalence , Prognosis , Prospective Studies , Risk Factors , SARS-CoV-2 , Self Report , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL